H1: Consumption Equity (Consumer Shares)
Lead: A research-driven framework to measure consumers’ long-term contribution with auditable rules and to design fair, compliant benefit-sharing mechanisms.
Primary CTA: See the Model → /research/consumption-equity-model
Secondary CTA: Apply for a Pilot → /get-involved/pilot
Trust line: Open-data mindset · Controls required · Negative results published · Compliance-first
Title: What is Consumption Equity?
Content (bullets):
Consumers contribute to enterprise value through repeat demand, revenue stability, brand lift, and scale effects.
Consumption Equity is a measurement + distribution design framework, not a marketing slogan.
We define auditable contribution metrics and test them against control models.
The default implementation starts with non-security participation units (CU) before any equity-like exploration.
Inline note (small):
This program does not sell securities and does not provide investment advice.
Anchor: #what-it-is
Title: How does it work? (3-level implementation path)
Content:
Level 1 (Non-security): Consumption Units (CU) map to participation benefits (tiers, access, service priority, community voting).
Level 2 (Benefit pool): CU allocates a predefined benefit pool under audited rules and caps (requires legal review).
Level 3 (Equity-like; conditional): CU-to-equity conversion is explored only where legally feasible with disclosures and safeguards.
Micro-example box:
A company defines a quarterly benefit pool (e.g., $X).
Consumers earn CU from net contribution (audited).
CU determines allocation share, subject to caps and anti-manipulation rules.
Anchor: #how-it-works
Title: Why does it matter?
Content:
Fairness: recognizes consumers as stakeholders in value creation.
Better incentives: improves retention and long-term alignment.
Auditability: makes contribution accounting transparent and comparable.
Scientific integrity: publishes controls, negative results, and failure boundaries.
Anchor: #why-it-matters
Is this a stock or a token sale?
No. Our default pilots use non-security participation units (CU) and focus on measurement and audited allocation rules.
Do you guarantee returns?
No. This is a research and pilot framework with explicit controls and the possibility of negative results.
Can CU become equity?
Only as a conditional research direction (Level 3), subject to legal feasibility and required disclosures.
What data do you need?
Aggregated metrics by default; no personal identifiers are required for most pilots.
How do you prevent abuse?
Return/refund normalization, coupon-loop detection, caps, and audit rules.
Who benefits first?
Pilots prioritize transparency and learning. Benefits depend on the participating company’s policy design.
Consumption Equity is a research and policy-design initiative. It is not an offer of securities, not investment advice, and does not guarantee returns.
工程化:/research/consumption-equity-model
C1. Hero
H1: Consumption Equity Model (CEM)
Lead: Formal definitions, auditing rules, control models, and falsifiable predictions for testing consumer contribution accounting.
Primary CTA: Apply for Pilot → /get-involved/pilot
Secondary CTA: Programs Overview → /programs/consumption-equity
Trust line: Definitions-first · Controls mandatory · Failure boundaries published

C2. Accordion 1 — “Definitions & formulas”
Title: Definitions and Core Variables
Content:
• NCC (Net Consumption Contribution): gross spend minus refunds/returns, normalized by audited rules (tax/fees/discount handling defined).
• B (Baseline unit): an internal auditable denominator (not market stock price) used to convert contribution into units.
• CU (Consumption Units):
CU = NCC / B
• We avoid using public stock price as denominator in early pilots to reduce volatility and regulatory ambiguity.
Anchor: #definitions

C3. Accordion 2 — “Controls & falsifiability”
Title: Controls and Falsifiable Predictions
Controls (bullets):
• Loyalty-points baseline (non-audited rewards)
• Marketing-only allocation baseline
• Revenue-only attribution baseline (ignores retention effects)
• Selection bias checks (discount-driven vs retention-driven cohorts)
Falsifiable predictions (bullets):
• CU-based allocation produces measurable improvements vs controls (retention, predictability, unit economics).
• CU metrics remain stable under sensitivity checks (time windows, discount normalization, return rates).
• If effects disappear under controls, the hypothesis is constrained or falsified and reported.
Anchor: #controls

C4. Accordion 3 — “Governance, safeguards, privacy”
Title: Governance, Safeguards, and Privacy-by-Design
Content:
• Caps to prevent concentration or gaming
• Anti-manipulation checks (refund loops, coupon loops)
• Aggregated reporting as default; minimal PII; data retention limits
• Clear separation between CU (non-security) and any equity-like exploration (conditional)
Anchor: #safeguards

C5. “Reproducibility Pack”小区块(非折叠,建议放在 Accordion 后)
Heading: Reproducibility Package (what we publish)
• Data schema and audit rules
• Pilot protocol template (metrics, controls, thresholds)
• Evaluation report (positive or negative)
• Versioned documentation
Link: /research/consumption-equity-model#reproducibility

C6. FAQ(建议 7 条,偏专业)
1. Why not use stock price in CU?
2. How is NCC audited across channels and refunds?
3. How do you handle time-lag effects (retention/brand)?
4. What is the minimum viable dataset for a pilot?
5. What are the failure boundaries?
6. How do you avoid “correlation implies causation”?
7. What legal constraints apply to Level 2 and Level 3?
Page 3 工程化:/get-involved/pilot
D1. Hero
H1: Pilot & Participation
Lead: Join as a Pilot Partner, Data Contributor, or Independent Reviewer. We publish controls, protocols, and results—including negative results.
Primary CTA: Apply as Pilot Partner → #pilot-form
Secondary CTA: Join as Reviewer → #reviewer-form
Trust line: Compliance-first · Aggregated data default · Transparent reporting

D2. Accordion 1 — “Pilot Partners (business)”
Title: Pilot Partners (Businesses)
Eligibility (bullets):
• Repeat purchase / subscription / retention-driven business preferred
• Willing to run Level 1 (non-security) or Level 2 (benefit pool) with legal review
• Can provide aggregated KPI time series (no PII required)
What we provide (bullets):
• Pilot protocol template
• CU rules and audit logic
• Control design and evaluation dashboard spec
• Optional anonymized publication
Anchor: #pilot-partners

D3. Accordion 2 — “Data contributors”
Title: Data Contributors
We accept:
• Public datasets or aggregated metrics
• Anonymized cohort-level data with a data dictionary
• Replication notebooks or alternative benchmarks
Anchor: #data-contributors

D4. Accordion 3 — “Independent reviewers”
Title: Independent Reviewers
Ideal backgrounds:
• compliance / securities law / tax
• corporate governance
• accounting / audit
• economics / mechanism design
What you review:
• definitions and audit rules
• controls and falsifiability
• language clarity and risk of misinterpretation
• pilot safeguards
Anchor: #reviewers

D5. Forms(表单字段规范,便于工程实现)
你可以用表单工具(Typeform、Tally、Google Form、HubSpot)或自建表单 API。以下字段建议最小集。
Form 1: Pilot Partner Application (#pilot-form)
• Company/Organization Name
• Website
• Country/Jurisdiction
• Business model (ecommerce/subscription/retail/other)
• Approx. monthly transactions (range)
• Available aggregated KPIs (checkbox)
• revenue, refunds/returns, repeat rate, CAC, retention, gross margin, etc.
• Preferred pilot level (Level 1 / Level 2)
• Primary contact name + email
• Notes / constraints
Form 2: Data Contribution (#data-form)
• Dataset name
• Source (public link or description)
• Data type (public / aggregated / anonymized)
• Time window
• Variables list (short)
• License/permission statement
• Contact email
Form 3: Reviewer (#reviewer-form)
• Name
• Expertise area (checkbox)
• Jurisdiction familiarity (optional)
• Availability (hours/month)
• Conflict-of-interest statement (checkbox)
• Contact email

D6. FAQ(建议 6 条)
1. What is the minimum commitment for a pilot?
2. Do pilots require sharing customer PII? (Answer: no, aggregated by default.)
3. Can we run Level 2 without legal counsel? (Answer: recommend counsel.)
4. Can results be kept private? (Answer: yes, anonymized/opt-in publication.)
5. Who owns the data and outputs? (Answer: partner owns data; we publish aggregated insights with permission.)
6. Are you raising investments? (Answer: no.)
H1: 消费股(Consumption Equity)倡议
导语: 我们提出一种“可审计的消费贡献计量 + 可合规的回馈机制”框架,让消费者对企业长期价值的贡献被公平计量、被透明回馈,并通过试点与对照研究持续验证。
主按钮: 查看模型与方法 → /research/consumption-equity-model
次按钮: 申请试点合作 → /get-involved/pilot
可信度说明: 公开规则 · 必设对照 · 允许负结果 · 合规优先
标题: 什么是“消费股/消费权益”?
要点:
消费不仅是支出,也可能对企业产生长期价值贡献:收入稳定性、复购、品牌溢价、规模效应等。
“消费股(更准确说:消费权益)”是一套计量与分配设计框架,不是营销口号。
我们先用非证券的“消费权益单位(CU)”做试点,再在合规条件下探索更高等级机制。
任何结论都必须在对照模型下检验,并公开失败边界。
提示(小字): 本页面为倡议与试点框架说明,不构成证券发行或投资建议。
标题: 如何运作?(三层实施路径)
要点:
Level 1(非证券,最快落地):用 CU 记录可审计的消费贡献,映射到会员等级、服务优先、提前购、社区投票等权益。
Level 2(收益分享池,需法务评审):企业设定“消费者回馈池”(可来自营销预算/利润分享政策),CU 决定分配比例,设上限与反作弊规则。
Level 3(类股权/股权方向,仅在可行时):在严格合规、披露与限制条件下,探索 CU 与股权/分红权的对接;此层不作为默认试点。
示例框:
企业设定季度回馈池 X
消费者按“净消费贡献额”获得 CU
CU 决定分配份额(有上限与反作弊审计)
标题: 为什么值得做?
要点:
公平性:让消费者的长期价值贡献被计量与回馈。
激励一致:帮助企业建立更强的复购与口碑机制。
可审计:规则透明,避免“拍脑袋式奖励”。
可验证:通过对照与试点,区分相关与因果。
这是在“发股票/发币”吗?
不是。默认试点使用非证券 CU,不进行证券发行或募资。
会承诺分红或收益吗?
不会。所有回馈均以试点政策为准,不构成收益承诺。
CU 能转换为股票吗?
仅作为 Level 3 研究方向,需严格合规与披露;不作为默认。
需要个人隐私数据吗?
默认只需汇总指标;不需要个人可识别信息。
如何防止刷单/退货套利?
通过退货扣减、优惠归一、异常检测、上限与审计规则。
对企业有什么现实好处?
更透明的忠诚机制、更可控的回馈预算、可评估的留存提升。
“消费股/消费权益”为研究与制度设计倡议,不构成证券发行、投资建议或收益承诺。
H1: 消费权益模型(CEM):定义、审计、对照与可证伪
导语: 这是一套可复现的研究框架:定义可审计的消费贡献指标,建立对照模型,给出可证伪预测与失败边界,并以试点数据进行检验。
主按钮: 申请试点合作 → /get-involved/pilot
次按钮: 返回项目页 → /programs/consumption-equity
可信度说明: 定义优先 · 对照必设 · 失败边界公开 · 隐私最小化
标题: 核心变量与计算口径
要点:
NCC(净消费贡献额):
毛消费额 − 退款/退货 − 口径内的折扣影响(按规则归一)± 税费处理(按规则)
B(权益基准单位):企业内部可审计的基准分母(不使用二级市场股价作为早期分母)。
CU(消费权益单位):
CU = NCC / B
说明(小字):
早期避免使用“股价”作为分母,以降低波动与监管歧义;若未来进入 Level 3,需另行合规设计。
标题: 如何避免“相关当因果”?
对照模型(必选至少一种):
A:传统积分/会员体系(非审计式奖励)
B:纯营销分配(不基于贡献计量)
C:仅收入口径(忽略留存/品牌的贡献项)
D:选择偏差控制(折扣驱动 vs 留存驱动人群)
可证伪预测(示例):
CU 机制在留存、复购、可预测性、单位经济等指标上,相比对照具有统计显著改善;
结果对折扣归一、退货率、时间窗口变化具有稳健性;
若在控制选择偏差后效果消失,则模型被约束或否定,并公开负结果。
标题: 治理与安全护栏
要点:
上限机制(防止集中与操纵)
反作弊审计(退货循环、优惠券循环、异常行为检测)
默认汇总报告;PII 最小化;数据留存期限
明确区分:CU(非证券单位) vs 类股权探索(仅在合规条件下)
为什么不用股价做分母?
NCC 跨渠道如何统一口径?
留存/品牌项如何避免“想象贡献”?
最小可行试点数据是什么?
失败边界怎么定义?
如何处理退货、折扣与季节性?
Level 2/3 的合规路径有哪些基本原则?
本页为研究模型说明,不构成法律、税务或投资建议,不构成证券发行。
H1: 试点与参与(Pilot & Participation)
导语: 我们招募企业试点方、数据贡献者与独立审阅者,共同验证“可审计消费贡献计量”的有效性。我们公开对照、公开协议、公开结果(含负结果)。
主按钮: 申请企业试点 → #pilot-form
次按钮: 加入独立审阅 → #reviewer-form
可信度说明: 合规优先 · 汇总数据默认 · 透明发布
标题: 企业试点合作(Pilot Partner)
适合对象:
复购/订阅/留存驱动型企业优先
可运行 Level 1(默认)或 Level 2(需法务评审)
能提供汇总 KPI(不需要用户隐私明细)
我们提供:
试点协议模板(周期、指标、对照、阈值)
CU 规则与审计口径
评估报告模板(可匿名发布)
标题: 数据贡献(Data Contributor)
我们接受:
公开数据或匿名汇总数据
数据字典与时间窗口说明
复现脚本或对照基线结果
标题: 独立审阅(Independent Reviewer)
需要的背景:
合规/证券法/税务
公司治理
审计/会计
经济学/机制设计
审阅内容:
定义与口径是否可审计
对照与可证伪是否充分
文案是否容易被误解为“发股/承诺收益”
试点护栏是否充分
表单 1:企业试点申请(#pilot-form)
公司/组织名称
官网
所在司法辖区/国家
业务类型(电商/订阅/零售/其他)
月订单量区间
可提供的汇总指标(复选:营收/退款退货/复购率/留存/CAC/毛利等)
试点等级偏好(Level 1 / Level 2)
联系人姓名与邮箱
备注/限制条件
表单 2:数据贡献(#data-form)
数据集名称
来源(链接或说明)
数据类型(公开/匿名汇总)
时间窗口
变量列表
授权/许可声明
联系邮箱
表单 3:独立审阅者(#reviewer-form)
姓名
专长领域(复选)
熟悉司法辖区(可选)
可投入时间(小时/月)
利益冲突声明(勾选)
联系邮箱
试点最小周期多久?(建议 8–12 周)
必须提供个人数据吗?(不需要,默认汇总)
结果能不公开吗?(可选匿名/内部版)
Level 2 是否必须法务?(强烈建议)
你们是否募资/卖股?(不)
我可以只做审阅不参与试点吗?(可以)